

Integrated Physics and Chemistry 1A Study Guide Examination for Acceleration (EA)/Credit by Exam (CBE)

The exam you are interested in taking is designed to test your proficiency in the relevant subject matter. You should be thoroughly familiar with the subject matter before you attempt to take the exam. This EA/CBE Study Guide can help you prepare for the exam by giving you an idea of what you need to review. You can check your familiarity level by reviewing the Texas Essential Knowledge and Skills (TEKS) for this course (see below). To refine your skills, you can refer to any of the state-adopted textbooks.

Texas Essential Knowledge and Skills (TEKS)

Every question that appears on this exam is derived from the knowledge and skills statements and student expectations within the Texas-mandated standards, the Texas Essential Knowledge and Skills (TEKS). You can view the TEKS for this exam online via the following link: <u>http://ritter.tea.state.tx.us/rules/tac/chapter112/ch112c.html#112.38</u>. Refer to section (c), Knowledge and skills, 1A–7F.

Throughout this guide, you'll see TEKS references. These refer to the numbers listed under (c) Knowledge and skills; for example, 1A or 3B. **Note:** Coverage of the TEKS is split between Integrated Physics and Chemistry 1A and 1B; so those TEKS not covered in this exam are covered in the Integrated Physics and Chemistry 1B EA/CBE.

Materials Needed

You will need to bring a #2 pencil to complete the exam. You are also allowed to bring and use a graphing calculator. You will receive a computer-graded answer sheet when you arrive at the testing center. You will be provided a formula sheet and periodic table with your exam. The formula sheet and periodic table are also included in this Study Guide for your review.

Exam Structure

You will be allowed **3 hours** to complete this exam. The exam consists of 50 multiple-choice questions worth 2 points each for a total of 100 points. The exam consists of the following 3 parts:

Part 1: Science Processes and Methods (15 questions) **Part 2:** Position, Speed, Velocity, and Acceleration (15 questions)

Part 3: Work, Energy, and Power (20 questions)

Scholastic Honesty

When you arrive at the testing center, you will be asked to carefully read the exam rules and sign a statement agreeing to take the exam in accordance with the rules. This is called the Examinee's Certification. The following is a copy of these rules:

Examinee's Certification

This certification must be signed *before* the exam is administered and then returned with the completed examination attached, or credit for the exam will not be given.

Scholastic dishonesty is a serious academic violation that will not be tolerated. Scholastic dishonesty encompasses, but is not limited to:

- copying from another student's work;
- using an unauthorized testing proctor or taking the exam at an unauthorized testing location;
- using materials not authorized by a testing proctor;
- possessing materials that are not authorized by a testing proctor, such as lessons, books, or notes;
- knowingly using or soliciting, in whole or part, the contents of an unadministered test;
- collaborating with or seeking aid from another student without authorization during the test;
- substituting for another person, or permitting another person to substitute for oneself, in taking a course test or completing any course-related assignment;
- using, buying, stealing, or transporting some or all of the contents of an unadministered test, test rubric, homework answer, or computer program.

Evidence of scholastic dishonesty will result in a grade of F on the examination and an F in the course (if applicable).

At the testing center, you will be asked to sign a statement that says you have read the above and agree to complete the examination with scholastic honesty.

General Study Tips

The bulleted lists and sample questions in this study guide can assist you in preparing for the exam. It is a fairly complete guide, but does not cover every item on the test. Ultimately, you should use the TEKS to guide your exam preparation.

Additional Study Tips

The following information provides direction for your studies. For each part, you will find study tips and sample questions to give you a general idea of the types of questions you can expect to see on the exam.

Part 1: Science Processes and Methods

This part relates to your knowledge of lab safety, a definition of science and its limits, scientific methods, scientific data, scientific thinking, and the historical contributions of scientists. It includes 15 questions worth 2 points each, for a total of 30 points.

Study Tips for Part 1

This part relates to TEKS 1A–3F. Familiarize yourself with those TEKS, and then be prepared to demonstrate knowledge of the following topics:

Lab Safety

- Identify safe lab practices, including common safety equipment and symbols and why they are important.
- Recognize how to properly dispose of lab materials.

Science and Its Limits

• Define science and understand the limits of the discipline.

Scientific Methods

- Recognize an effective hypothesis.
- Identify the common components of scientific methods.
- Identify the components of a valid experiment, including the terms *control*, *dependent variable*, and *independent variable*.
- Know how to select appropriate equipment for experiments.

Scientific Data

- Understand the value of effective data and how to gather information and perform common calculations.
- Perform accurate and precise measurements.
- Distinguish between accuracy and precision.
- Interpret graphs; e.g., if given the *x*-axis value, determine the value on the *y*-axis and know on which axis the independent and the dependent variables are located.

Scientific Thinking

- Draw valid scientific conclusions by noting trends from data and thinking critically about and analyzing scientific explanations.
- Analyze media messages and understand how the term "false balance" applies to the use of scientific messages by the media.

History of Science

- Know the history of chemistry and contributions of scientists; particularly, Aristotle, Niels Bohr, John Dalton, James Prescott Joule, Antoine-Laurent Lavoisier, Dmitry Mendeleyev, Sir Isaac Newton, Joseph Priestley, and Ernest Rutherford.
- Identify basic facts about the history of the periodic table of the elements.
- Demonstrate a general understanding of the history of atomic theory.
- Know who put forth the idea that protons and neutrons are made of smaller particles called quarks.
- Distinguish between theories associated with classical physics and theories associated with modern physics.

Sample Questions for Part 1

The following are sample questions. You can find the correct answers listed after the questions, but try answering the questions without looking at the answers first to check your comprehension.

DIRECTIONS: Select the BEST response to each of the following questions.

- 1. Assume you have collected a series of measurements. Which of the following statements about the accuracy and precision of those measurements is correct?
 - A. All measurements that are accurate are also precise.
 - B. All measurements that are precise are also accurate.
 - C. Accuracy is the agreement of repeated measurements; precision is the closeness of a measurement to the actual value.
 - D. Precision is the agreement of repeated measurements; accuracy is the closeness of a measurement to the actual value.
- 2. Which person is credited for being the first to describe a chemical reaction, and therefore the first modern chemist?
 - A. Aristotle
 - B. John Dalton
 - C. Joseph Priestley
 - D. Antoine-Laurent Lavoisier

Part 2: Position, Speed, Velocity, and Acceleration

This part relates to your knowledge of various aspects of position, speed, velocity, and acceleration. In addition, it covers Newton's laws of motion, momentum, mass, weight, gravity, work, simple machines, and compound machines. It includes 15 questions worth 2 points each, for a total of 30 points.

Study Tips for Part 2

This part relates to TEKS 4A–4F. Familiarize yourself with those TEKS, and then be prepared to demonstrate knowledge of the following topics:

Position, Speed, Velocity, and Acceleration

- Interpret the slope of a Speed vs. Time graph to determine acceleration.
- Calculate speed and convert the dimensions to different units.
- Distinguish between velocity versus zero velocity; velocity versus speed; and average versus instantaneous velocity.
- Know the definitions of escape velocity and terminal velocity.
- Solve for velocity, distance, or time.
- Compare the velocity of various objects expressed in different units.
- Solve for acceleration, initial velocity, final velocity, or time.
- Understand gravitational acceleration.
- Calculate and know the difference between distance and displacement.

Newton's Laws of Motion

- Recognize examples of Newton's 1st, 2nd, and 3rd laws.
- Understand the relationship between an object's motion and net force.
- Use Newton's 2nd law to solve for force, mass, and acceleration.

Momentum

- Know that overall momentum in a system is conserved, where the momentum of one object is transferred to another.
- Compare the momentum of various objects given their masses and velocities.
- Recognize that an object will not have momentum if it does not have velocity.
- Determine which object will have more momentum if two objects have identical velocities.
- Understand the law of conservation of momentum.

Mass, Weight, and Gravity

- Explain the difference between mass and weight.
- Use the formula for weight to calculate the mass, the acceleration from gravity, or the weight of an object.
- Understand the relationship between the mass of two objects and the amount of gravitational attraction between them.
- Understand rotational force.

• Understand the relationship of the distance between two objects and the amount of gravitational attraction between them.

Work, Simple Machines, and Compound Machines

- Recognize that work is only done when the applied force on an object, and the direction of motion of the object, are both in the same direction.
- Be able to identify everyday examples of machines.
- Explain the ways in which machines are able to make work easier (mechanical advantage).
- Determine the efficiency of a machine, given its work input and work output.
- Calculate the work (input and output) done by a simple machine.
- Convert between newtons and kilograms and joules to newtons to watts.

Sample Questions for Part 2

The following are sample questions. You can find the correct answers listed after the questions, but try answering the questions without looking at the answers first to check your comprehension.

DIRECTIONS: Select the BEST response to each of the following questions.

- 1. Approximately how much work is needed to pull a 4 kg bucket of water from the bottom of a 15 m well to the surface?
 - A. 4 J
 - B. 40 J
 - C. 60 J
 - D. 600 J
- 2. The diagram below shows the speed of a moving object at different time intervals. What logical inference can you make from this information?

- A. The object is in motion.
- B. The object is speeding up.
- C. The object has a constant velocity of 5 m/s.
- D. The object is accelerating at a rate of 5 m/s^2 .

[1: D; 2: D]

Part 3: Work, Energy, and Power

This part relates to your knowledge of the conservation of energy, harmonic motion and pendulums, thermal energy, waves, and wave applications. It includes 20 questions worth 2 points each, for a total of 40 points.

Study Tips for Part 3

This part relates to TEKS 5A, 5B, 5D, 5E, 5G, and 5H. Familiarize yourself with those TEKS, and then be prepared to demonstrate knowledge of the following topics:

Conservation of Energy

- Be familiar with the law of conservation of energy and its ramifications for the work input and work output of a machine.
- Recognize the types of energy conversions happening in given situations; e.g., kinetic to potential to mechanical.
- Calculate the kinetic energy of an object, using the appropriate formula.
- Recognize the factors that affect the kinetic energy, mass, and velocity of an object.
- Recognize common forms of gravitational potential energy.
- Compare the gravitational potential energy of various objects, using the formula and the mass and height of each object.
- Know the meaning of chemical potential energy and where it is usually found.

Harmonic Motion and Pendulums

- Recognize what conditions and factors affect the harmonic motion of a pendulum and of a mass on a spring.
- Calculate the period of a pendulum, or the period of a mass on a spring, using the appropriate formula.

Thermal Energy

- Explain the direction of heat transfer.
- Name the three types of heat transfer, describe their characteristic properties, describe the difference between each, and recognize examples of each type in real-world situations.
- Describe the difference between heat and temperature.
- Recognize that the color of an object may determine the extent that object reflects or absorbs radiation.
- Recognize the difference between conductors and insulators, and give examples of each.

Waves

- Know the speed of light, and use this value in the formula for the velocity of a wave to determine the time the wave has traveled, or the distance it has traveled.
- Use the formula for the speed of a wave, determine the wave's frequency, wavelength, or speed.
- Summarize the features of a wave, including crest, trough, wavelength, frequency, speed, and amplitude.
- Describe the behavior of waves, including reflection, refraction, diffraction, constructive interference, and destructive interference.

The University of Texas at Austin, Continuing & Innovative Education K-16 Education Center • Know the types of waves: electromagnetic and mechanical waves.

Wave Applications

- Recognize the factors that determine the speed of sound.
- Understand how sound is measured in decibels, and know how a change in decibel level relates to a change in pressure (or intensity) of the sound.
- Know how the pitch of a sound and the frequency of a sound are related.
- Know how primary colored lights combine/refract with each other and predict result.

Sample Questions for Part 3

The following are sample questions. You can find the correct answers listed after the questions, but try answering the questions without looking at the answers first to check your comprehension.

DIRECTIONS: Select the BEST response to each of the following questions.

- 1. Three students step off the same diving platform and drop into a swimming pool below. Which student has the **MOST** kinetic energy as he enters the water?
 - A. The student with the most mass
 - B. The student with the least volume
 - C. The student with the greatest density
 - D. The student with the greatest final velocity
- 2. A red light shining on blue paper makes the paper appear _____.
 - A. black
 - B. purple
 - C. magenta
 - D. burgundy
- 3. Suppose you have a 3.0 kilogram mass on a spring. What is its period if it has a spring constant of 60 newtons per meter?
 - A. 0.31 seconds
 - B. 0.70 seconds
 - C. 1.4 seconds
 - D. 28 seconds

[1: A; 2: B; 3: C]

Integrated Physics and Chemistry Formula Chart

General J	Formulas
Area = length × width $A = l \times w$	Density = $\frac{\text{mass}}{\text{volume}}$ $D = \frac{m}{v}$
% error = $\frac{\text{actual} - \text{experimental}}{\text{actual}}$	$\times 100 \% \ err = \frac{act - exp}{act} \times 100$
Force and Mo	tion Formulas
Net force = mass × acceleration $F = m \times a$	distance = velocity × time $d = v \times t$
final velocity = initial velocity + ac	celeration × time $v_f = v_i + a \times t$
acceleration = $\frac{\text{final velocity}}{\text{chan}}$	$\frac{v - \text{initial velocity}}{\text{ge in time}} a = \frac{\Delta v}{t}$
Work = Force × distance $W = F \times d$	Power = $\frac{Work}{time}$ $P = \frac{W}{t}$
%Efficiency = $\frac{\text{Work out}}{\text{Work inj}}$	$\frac{2\text{put}}{\text{put}} \times 100 \qquad \% \text{E} = \frac{\text{W}_{\text{out}}}{\text{W}_{\text{in}}}$
Ideal Mechanical Advantage = $\frac{\text{Length}}{\text{Height}}$ $IMA = \frac{H}{H}$	<u>-</u>
Ideal Mechanical Advantage = $\frac{\text{Length of slope}}{\text{Height of slope}}$	$IMA = \frac{L_s}{H_s}$
Ideal Mechanical Advantage = $\frac{\text{Length of effort a}}{\text{Length of resistance}}$	$\frac{\text{arm}}{\text{ce arm}} IMA = \frac{L_e}{L_r}$
Actual Mechanical Advantage = $\frac{\text{mass}}{\text{effort force}}$ AM	$A = \frac{m}{F_{effort}}$
Power = Force × velocity $P = F \times v$	$Current = \frac{Voltage}{Resistance} I = \frac{V}{R}$
Period = $2\pi \sqrt{\frac{\text{Length}}{\text{gravity}}}$ $T = 2\pi \sqrt{\frac{L}{g}}$ Pe	riod = $2\pi \sqrt{\frac{\text{mass}}{\text{spring constant}}}$ $T = 2\pi \sqrt{\frac{m}{k}}$
Series	circuit:
Total Resistance = Sum of Resis	stance $R_T = R_1 + R_2 + R_3$
Parallel Total Resistance = Sum of the inverse	circuit: of Resistance $R_T = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$
Energy and Mom	entum Formulas
momentum = mass × velocity $p = m \times v$	Weight = mass × gravity $W = m \times g$
Gravitational Potential Energy = mass × accel	eration due to gravity \times height $GPE = mgh$
Kinetic Energy = $\frac{1}{2}$ (mass	\times velocity ²) $KE = \frac{1}{2}mv^2$

The University of Texas at Austin, Continuing & Innovative Education K-16 Education Center

Integrated Physic	s and Che	emistry Formula	Chart, o	continued
$nH = -\log[c]$	concentation	of hydronium pH	= -log[H	4+1
Som	nd Waves an	d Light Wayes Form		• J
frequenc	$y = \frac{\text{number}}{t}$	$\frac{\text{r of waves}}{\text{ime}} f = \frac{\# o f}{f}$	f waves t	
wave speed = frequency × wavelength $v = f\lambda$ Magnification = $\frac{\text{height of image}}{M = \frac{h_i}{M}}$				
wave speed = frequency × wavelength $v = f\lambda$ Magnification = $\frac{\text{height of image}}{\text{height of object}}$ $M = \frac{h_i}{h_o}$				
	Thermocl	nemistry Formulas		
heat gained or lost = mass	s × specific ł	heat $ imes$ change in temp	erature	$q = m \times c \times \Delta T$
	Ide	eal Gas Law		
P = Pressure of the co	onfined gas i	n atmospheres		
V = Volume of th	e confined g	as, in liters		
n = Numbe	er of moles o	fgas		PV = nRT
R = Gas constant	, 0.0821L>	$\frac{\text{atm}}{\text{mol}} \times \text{K}$		
T = Tempe	erature in Ke	lvin		
	Constants an	d Conversion Factors		
spring constant = $\frac{\text{Force}}{\text{distance}}$	$k = \frac{F}{d}$	acceleration d	lue to gra	vity = $g = 9.8 \frac{\text{m}}{\text{s}^2}$
speed of sound = 340 m	/s	speed of lig	cht = c =	$3.0 \times 10^8 \text{ m/s}$
watt (W) = $\frac{J}{s} = \frac{Nm}{s}$	newton	$(N) = kg m/s^2$		joule $(J) = Nm$
$^{\circ}\mathrm{F} = \left(\frac{9}{5} \times ^{\circ}\mathrm{C}\right) + 32$	К	= °C + 273	1 wave	cycle/second = 1 hertz (Hz)
1 calorie (cal) = 4.18 joules	1000 ca	lories (cal) = 1 Calor	ie (Cal) =	1 kilocalorie (kcal)
$1 \text{ cm}^3 = 1 \text{ mL}$	11	meter = 100 centimet	ers = 10	00 millimeters
1 yard = 0.915 meter	1 mil	e = 5280 feet	1 incl	n = 2.54 centimeters
1 foot = 12 inches = 0.305 mete	er 1 kilo	meter = 1000 meters	s 1 ki	logram = 1000 grams

The University of Texas at Austin, Continuing & Innovative Education K-16 Education Center

	Group 1				L L		4 F J	Ū (490		Mass nu	mbers in	brackets a	are those o	f the	18
	IA				IdK	ופר		L V	E	en	N	most	stable or n	nost comi	mon isoto	pe.	VIIIA
_	hydrogen 1				hydrog	ten -		ne									helium 2
-	T	2			- '	+	- Atomic N	Number				13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Нe
	1.0079 Inthium berv						Svm	lod				poron	Carbon	nitroaen		fluorine	4.0026 neon
	3	4										2	9	7	8	6	10
5	С: В	e			1.007	6	— Atomic	: Mass				8	υ	Z	0	ш	Re
	6.941 9.0	0122									_	10.811	12.011	14.007	15.999	18.998	20.180
	sodium magr 11 1	nesium 2										aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
m	Na	lq ³	4	Ŋ	9	7	8	6	10	11	12	A	Si	۵.	S	ΰ	Ar
	22.990 24.	ling	IVB	VB	VIB	VIIB		III		в	ШВ	26.982	28.086	30.974	32.065	35.453	39.948
	potassium cak 19 2	cium scandium	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
4	X	a Sc	Ħ	>	Ç	Mn	Б Р	0 U	iZ	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.098 40.	.078 44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.38	69.723	72.64	74.922	78.96	79.904	83.798
	rubidium stroi 37 3	ntium yttrium 38 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	50 ∉	antimony 51	tellurium 52	lodine 53	xenon 54
5	Rb S	ř Y	Zr	qN	Мo	Ч	Ru	Rh	Pd	Aq	DQ	2	Sn	Sb	Тe	_	Xe
	85.468 87	7.62 88.906	91.224	92.906	95.96	[86]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
	caesium bar	rium 36	hafnium 72	tantalum 73	tungsten 74	rhentum 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
9	S	Ianthanoids	Ŧ	Ta	3	Re	Os	7	Pt	Au	Hq	F	Рb	B:	Ъ	At	Rn
	132.91 13.	7.33	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
	francium rad	dium 38	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	darmstadtium 110	roentgenium 111	copernicium 112		flerovium 114		Livermorium 116		
2	Fr R	89-103 actinoids	Ŗf	рþ	Sa	Bh	Hs	Mt	Ds	Ra	U		u		>		
	[223]	26]	[267]	[268]	[269]	[270]	[269]	[278]	[281]	[281]	[285]		[289]		[293]		
		, '															
			lanthanum 57	cerlum 58	praseodymium 59	neodymium 60	promethium 61	samarium 67	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	lutetium 71
	Lanthanic	de Series	La	e U	Ρr	Nd	Pm	Sm	Eu	bg	T b	2	۴	Ļ	Tm	γb	Lu
			138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
			actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102	lawrencium 103
	Actinide	e Series	Ac	Ч	Pa	⊃	dN	Pu	Am	с С	Bk	ť	Es	Fa	βd	٥N	Ļ
			[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	[262]

The University of Texas at Austin, Continuing & Innovative Education K-16 Education Center

11